<nobr id="r1bpv"><listing id="r1bpv"><menuitem id="r1bpv"></menuitem></listing></nobr>
<pre id="r1bpv"></pre>
      <address id="r1bpv"></address>

      <em id="r1bpv"><sub id="r1bpv"><video id="r1bpv"></video></sub></em> <em id="r1bpv"><address id="r1bpv"></address></em>
        <th id="r1bpv"><noframes id="r1bpv">

          <meter id="r1bpv"></meter>
            Paul's Online Notes
            Paul's Online Notes
            Home / Calculus I / Integrals / Definition of the Definite Integral
            Show Mobile Notice Show All Notes Hide All Notes
            Mobile Notice
            You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.
            Assignment Problems Notice
            Please do not email me to get solutions and/or answers to these problems. I will not give them out under any circumstances nor will I respond to any requests to do so. The intent of these problems is for instructors to use them for assignments and having solutions/answers easily available defeats that purpose.

            Section 5-6 : Definition of the Definite Integral

            For problems 1 – 4 use the definition of the definite integral to evaluate the integral. Use the right end point of each interval for \(x_{\,i}^*\).

            1. \( \displaystyle \int_{{ - 2}}^{1}{{7 - 4x\,dx}}\)
            2. \( \displaystyle \int_{0}^{2}{{3{x^2} + 4x\,dx}}\)
            3. \( \displaystyle \int_{{ - 1}}^{1}{{{{\left( {x - 3} \right)}^2}\,dx}}\)
            4. \( \displaystyle \int_{0}^{3}{{8{x^3} + 3x - 2\,dx}}\)
            5. Evaluate : \( \displaystyle \int_{{ - 123}}^{{ - 123}}{{{{\cos }^6}\left( {2x} \right) - {{\sin }^8}\left( {4x} \right)\,dx}}\)

            For problems 6 – 8 determine the value of the given integral given that \( \displaystyle \int_{{ - 2}}^{5}{{f\left( x \right)\,dx}} = 1\) and \( \displaystyle \int_{{ - 2}}^{5}{{g\left( x \right)\,dx}} = 8\).

            1. \( \displaystyle \int_{{ - 2}}^{5}{{ - 3g\left( x \right)\,dx}}\)
            2. \( \displaystyle \int_{{ - 2}}^{5}{{7f\left( x \right) - \frac{1}{4}g\left( x \right)\,dx}}\)
            3. \( \displaystyle \int_{5}^{{ - 2}}{{12g\left( x \right) - 3f\left( x \right)\,dx}}\)
            4. Determine the value of \( \displaystyle \int_{7}^{{ - 1}}{{f\left( x \right)\,dx}}\) given that \( \displaystyle \int_{{13}}^{7}{{f\left( x \right)\,dx}} = - 9\) and \( \displaystyle \int_{{13}}^{{ - 1}}{{f\left( x \right)\,dx}} = - 12\).
            5. Determine the value of \( \displaystyle \int_{0}^{6}{{4f\left( x \right)\,dx}}\) given that \( \displaystyle \int_{0}^{5}{{f\left( x \right)\,dx}} = 10\) and \( \displaystyle \int_{5}^{6}{{f\left( x \right)\,dx}} = 3\).
            6. Determine the value of \( \displaystyle \int_{2}^{{10}}{{f\left( x \right)\,dx}}\) given that \( \displaystyle \int_{2}^{4}{{f\left( x \right)\,dx}} = - 1\), \( \displaystyle \int_{4}^{7}{{f\left( x \right)\,dx}} = 3\) and \( \displaystyle \int_{{10}}^{7}{{f\left( x \right)\,dx}} = - 8\).
            7. Determine the value of \( \displaystyle \int_{{ - 5}}^{{ - 1}}{{f\left( x \right)\,dx}}\) given that \( \displaystyle \int_{2}^{{ - 5}}{{f\left( x \right)\,dx}} = 56\), \( \displaystyle \int_{7}^{2}{{f\left( x \right)\,dx}} = - 90\) and \( \displaystyle \int_{{ - 1}}^{7}{{f\left( x \right)\,dx}} = 45\).

            For problems 13 – 17 sketch the graph of the integrand and use the area interpretation of the definite integral to determine the value of the integral.

            1. \( \displaystyle \int_{{ - 2}}^{1}{{12 - 5x\,dx}}\)
            2. \( \displaystyle \int_{0}^{4}{{\sqrt {16 - {x^2}} \,dx}}\)
            3. \( \displaystyle \int_{{ - 3}}^{3}{{5 - \sqrt {9 - {x^2}} \,dx}}\)
            4. \( \displaystyle \int_{{ - 1}}^{3}{{8x - 3\,dx}}\)
            5. \( \displaystyle \int_{1}^{6}{{\left| {x - 3} \right|\,dx}}\)

            For problems 18 – 23 differentiate each of the following integrals with respect to x.

            1. \( \displaystyle \int_{{ - 8}}^{x}{{{{\bf{e}}^{\cos \left( t \right)}}\,dt}}\)
            2. \( \displaystyle \int_{2}^{{{x^{\,2}}}}{{\sqrt {\cos \left( t \right) + 3} \,dt}}\)
            3. \( \displaystyle \int_{0}^{{{{\bf{e}}^{3x}}}}{{\frac{1}{{{t^4} + {t^2} + 1}}dt}}\)
            4. \( \displaystyle \int_{{\sin \left( {9x} \right)}}^{8}{{\frac{{{{\bf{e}}^t}}}{{7t}}dt}}\)
            5. \( \displaystyle \int_{{{x^{\,3}}}}^{x}{{{{\cos }^4}\left( t \right) - {{\sin }^2}\left( t \right)\,dt}}\)
            6. \( \displaystyle \int_{{9x}}^{{\tan \left( x \right)}}{{\frac{{\cos \left( t \right) + 2}}{{\sin \left( t \right) + 4}}\,dt}}\)
            7. Evaluate the limit : \(\mathop {\lim }\limits_{x \to 0} \frac{{\displaystyle \int_{0}^{x}{{{{\bf{e}}^{{t^2}}}\,dt}}}}{x}\)
            天天干夜夜爱 天天色播 天天射天天舔 <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>