<nobr id="r1bpv"><listing id="r1bpv"><menuitem id="r1bpv"></menuitem></listing></nobr>
<pre id="r1bpv"></pre>
      <address id="r1bpv"></address>

      <em id="r1bpv"><sub id="r1bpv"><video id="r1bpv"></video></sub></em> <em id="r1bpv"><address id="r1bpv"></address></em>
        <th id="r1bpv"><noframes id="r1bpv">

          <meter id="r1bpv"></meter>
            Paul's Online Notes
            Paul's Online Notes
            Home / Calculus III / Surface Integrals / Divergence Theorem
            Show Mobile Notice Show All Notes Hide All Notes
            Mobile Notice
            You appear to be on a device with a "narrow" screen width (i.e. you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best views in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (should be able to scroll to see them) and some of the menu items will be cut off due to the narrow screen width.

            Section 6-6 : Divergence Theorem

            In this section we are going to relate surface integrals to triple integrals. We will do this with the Divergence Theorem.

            Divergence Theorem

            Let \(E\) be a simple solid region and \(S\) is the boundary surface of \(E\) with positive orientation. Let \(\vec F\) be a vector field whose components have continuous first order partial derivatives. Then,

            \[\iint\limits_{S}{{\vec F\centerdot d\vec S}} = \iiint\limits_{E}{{{\mathop{\rm div}\nolimits} \vec F\,dV}}\]

            Let’s see an example of how to use this theorem.

            Example 1 Use the divergence theorem to evaluate \(\displaystyle \iint\limits_{S}{{\vec F\centerdot d\vec S}}\) where \(\vec F = xy\,\vec i - \frac{1}{2}{y^2}\,\vec j + z\,\vec k\) and the surface consists of the three surfaces, \(z = 4 - 3{x^2} - 3{y^2}\), \(1 \le z \le 4\) on the top, \({x^2} + {y^2} = 1\), \(0 \le z \le 1\) on the sides and \(z = 0\) on the bottom.
            Show Solution

            Let’s start this off with a sketch of the surface.

            This is a graph with the standard 3D coordinate system.  The positive z-axis is straight up, the positive x-axis moves off to the left and slightly downward and positive y-axis moves off the right and slightly downward.  The walls of the solid in this graph are the cylinder given in the problem statement and whose “cap” is the elliptic paraboloid that starts at z=4 and opens along the z-axis in the negative z direction until it hits the cylinder at z=1.

            The region \(E\) for the triple integral is then the region enclosed by these surfaces. Note that cylindrical coordinates would be a perfect coordinate system for this region. If we do that here are the limits for the ranges.

            \[\begin{array}{c}0 \le z \le 4 - 3{r^2}\\ 0 \le r \le 1\\ 0 \le \theta \le 2\pi \end{array}\]

            We’ll also need the divergence of the vector field so let’s get that.

            \[{\mathop{\rm div}\nolimits} \vec F = y - y + 1 = 1\]

            The integral is then,

            \[\begin{align*}\iint\limits_{S}{{\vec F\centerdot d\vec S}} & = \iiint\limits_{E}{{{\mathop{\rm div}\nolimits} \vec F\,dV}}\\ & = \int_{{\,0}}^{{\,2\pi }}{{\int_{{\,0}}^{{\,1}}{{\int_{{\,0}}^{{4 - 3{r^2}}}{{r\,dz}}\,dr}}\,d\theta }}\\ & = \int_{{\,0}}^{{\,2\pi }}{{\int_{{\,0}}^{{\,1}}{{4r - 3{r^3}\,dr}}\,d\theta }}\\ & = \int_{{\,0}}^{{\,2\pi }}{{\left. {\left( {2{r^2} - \frac{3}{4}{r^4}} \right)} \right|_0^1\,d\theta }}\\ & = \int_{{\,0}}^{{\,2\pi }}{{\frac{5}{4}\,d\theta }}\\ & = \frac{5}{2}\pi \end{align*}\]
            天天干夜夜爱 天天色播 天天射天天舔 <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>